A FEATURE SELECTION AND ASSOCIATION RULE APPROACH TO IDENTIFY GENES ASSOCIATED WITH METASTASIS AND LOW SURVIVAL IN SARCOMA

M. Martínez-Ballesteros (mariamartinez@us.es), M. Lourdes Linares-Barrera, J. Riquelme

Dept. Computer Languages and Systems, University of Seville J.M. García-Heredia Dept. Vegetal Biochemistry and Molecular Biology, University of Seville

1. MOTIVATION

Problem:

- Identification of relevant genes to metastatic sarcoma.
- Discovery of significant relationships between metastasis-associated genes and < 5-year patient survival.
- Sarcomas are rare and heterogeneous mesodermal tumors that primarily affect children and adolescents (over 20% of all pediatric tumors).
- The relative 5-year survival rate for patients with metastatic sarcoma is usually low.
- Investigating the genetic basis of these tumors through genome-wide analysis is crucial due to their rarity and late diagnosis.

2. METHODOLOGY

ASSOCIATION RULE MINING

FEATURE SELECTION

Methodology phases: 1. Preprocessing of data: filtering, summarization

2. Feature selection: subset of relevant genes for metastatic sarcoma using FOCI method.

and analysis of differential gene expression.

3. Association rule mining: discovering interesting relationships between genes, leading to the identification of potential biomarkers related to metastastic sarcoma and low survival time.

Input data

- Gene expression dataset GSE21050 French Sarcoma Group (FSG) database available in Gene Expression Omnibus (GEO).
- 309 patients:

Time Survivor

 Metastasis status: Yes (121) + No (188). 54,613 probes (Affymetrix Human Genome U133 Plus 2.0).

3. RESULTS

Preprocessing results

- Filtering and summarization process: 11,901 genes.
- Differential expression analysis: 1,516 genes.

Feature selection results

- Number of genes selected using FOCI that best explains the response variable (metastasis): 120
- Hierarchical clustering and Volcano Plot to analyze the selected genes expression levels.

Association rules mining results

 Example of associations between genes with low (0) and high (1) expression levels in patients with <5-year survival (t_survival = 0) and metastasis.</pre>

Antecedent	Consequent	Sup	Lift	Conf
$\overline{\text{CKAP2=1} \land \text{GART=0} \land \text{H2AZ1=0} \land \text{t_survival=0}}$	metastasis	0.055	1.64	1.00
ADAMTSL4=1 \land CDC42EP2=0 \land DSTN=0 \land t_survival=0	metastasis	0.058	1.64	1.00
$\underline{ADAMTSL4{=}1 \land DSTN{=}0 \land GMNN{=}1 \land t_survival{=}0}$	metastasis	0.055	1.64	1.00
$\overline{\text{ADAMTSL4} = 1 \land \text{ISLR} = 1 \land \text{TOP2A} = 1 \land \text{t_survival} = 0}$	metastasis	0.052	1.55	0.94
$ACADVL{=}1 \ \land \ C2orf48{=}1 \ \land \ FBLN5{=}1 \ \land \ t_survival{=}0$	metastasis	0.058	1.48	0.90
$\underline{ACADVL}{=}1 \land \underline{SPDL}1{=}1 \land \underline{TIAM}1{=}1 \land \underline{t}\underline{survival}{=}0$	metastasis	0.061	1.49	0.90
$\overline{\text{ATP6AP1L=0} \land \text{DPYSL3=0} \land \text{NCAPG2=0} \land \text{t_survival=0}}$	metastasis	0.061	1.56	0.95
$DPYSL3{=}0 \land NCAPG2{=}0 \land POLA2{=}0 \land t_survival{=}0$	metastasis	0.074	1.51	0.92
CDC42EP2=0 \land DPYSL3=0 \land NCAPG2=0 \land t_survival=0	metastasis	0.074	1.51	0.92

4. CONCLUSIONS

- Relevant group of genes associated with metastasis and low survival rates in sarcoma*.
- Potential new treatments for metastasic sarcoma patients integrating drug repurposing strategies,, association rules, and gene-drug associations**.
- Future works: heterogeneous omic data and other diseases, advanced algorithms for identifying relevant association rules.

Acknowledgements: The authors would like to thank the Spanish Ministry of Science and Innovation for the support under PID2020-117954RB-C22 project.

*M.L. Linares-Barrera, M. Martínez-Ballesteros, J.M. García-Heredia, J.C. Riquelme. A Feature Selection and Association Rule Approach to Identify Genes Associated with Metastasis and Low Survival in Sarcoma. 18th International Conference on Hybrid Artificial Intelligence Systems, 2023

**J.M. García-Heredia, M. Pérez, E.M. Verdugo-Sivianes, M. Martínez-Ballesteros, S.M. Ortega-Campos A. Carnero. A new treatment for sarcoma extracted from combination of miRNA deregulation and gene association rules. Signal Transduction and Targeted Therapy, 8:1, 231, 2023, https://doi.org/10.1038/s41392-023-01470-z

